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a b s t r a c t 

The genome is partitioned into regions of euchromatin and heterochromatin. The organization of hete- 

rochromatin is important for the regulation of cellular processes such as chromosome segregation and 

gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based 

approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D con- 

focal light microscopy images. Our approach employs a novel 3D intensity model based on spherical 

harmonics, which analytically describes the shape and intensities of the foci. The model parameters are 

determined by fitting the model to the image intensities using least-squares minimization. To character- 

ize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine 

a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and 

real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. 

It turned out that our approach yields accurate 3D segmentation results and performs better than pre- 

vious approaches. We also show that our approach can be used for quantifying 3D shape differences of 

heterochromatin foci. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(  

r  

i  

H  

i  

S  

l  

i  

c  

c  

m  

m  

a  

i  

o  

c  
1. Introduction 

The genomic DNA of eukaryotic cells is packaged into chro-

matin, a large protein-DNA complex located inside the cell nu-

cleus. Transcription, DNA replication, and DNA repair are examples

of vital biological processes that depend on chromatin organiza-

tion ( Sexton et al., 2015, Cremer et al., 2015 ). In a coarse-grained

classification, two functional states of chromatin are distinguished:

the more open euchromatin active in transcription, and the more

densely packed heterochromatin that is biologically inactive. Fur-

thermore, formation of a stable heterochromatin structure is im-

portant for proper chromosome segregation and genomic stability,

and its misregulation is linked to cancer and other diseases ( Hahn

et al., 2010, Plass et al., 2013 ). The establishment of heterochro-

matin is controlled by DNA methylation and post-translational hi-

stone modification, as well as the recruitment of architectural

protein factors that recognize these so called epigenetic signals
� This paper was recommended for publication by Dr. James Duncan. 
∗ Corresponding author. Tel.: +49 6221 54 51305; fax: +49 6221 54 51488. 

E-mail addresses: simon.eck@bioquant.uni-heidelberg.de (S. Eck), 

s.woerz@dkfz.de (S. Wörz), k.rohr@dkfz.de (K. Rohr). 

t  

2  

e  

r  

s  

d

http://dx.doi.org/10.1016/j.media.2016.03.001 

1361-8415/© 2016 Elsevier B.V. All rights reserved. 
 Saksouk et al., 2015 ). The quantitative analysis of the underlying

egulatory epigenetic networks based on fluorescence microscopy

mages as well as other experimental readouts ( Müller et al., 2009,

athaway et al., 2012, Müller-Ott et al., 2014 ) is an emerging topic

n biomedical science and medical diagnosis ( Webster et al., 2013,

aab et al., 2014 ). A prototypic example of a transcriptionally si-

enced heterochromatic state is that of pericentric heterochromatin

n mouse ( Probst et al., 2008 ). It is ideally suited for a fluores-

ence microscopy image-based analysis. Due to their higher DNA

ontent and enrichment of AT sequences, pericentric heterochro-

atic domains form condensed clusters that can be identified in

ouse cells by staining with DAPI (4,6-diamidino-2-phenylindole),

 fluorescent DNA-intercalating dye. Perturbances of the underly-

ng epigenetic network are reflected in the structure and formation

f pericentric heterochromatic domains. Furthermore, their shape

hanges during differentiation of embryonic stem cells and is func-

ionally relevant for the pluripotent stem cell state ( Meshorer et al.,

006, Mattout et al., 2015 ). Thus, there is a need to quantify het-

rochromatin and shape changes of heterochromatin domains in

elation to cell differentiation, gene silencing, and chromosome

egregation as well as to the misregulation of these processes in
isease. 

http://dx.doi.org/10.1016/j.media.2016.03.001
http://www.ScienceDirect.com
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Fig. 1. Maximum intensity projections (MIPs) of a cell nucleus in a 3D two-channel 

microscopy image: DAPI-stained heterochromatin (left) and fluorescently labeled 

heterochromatin protein 1 α (HP1 α) (right). 
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In this work, we address the task of heterochromatin quan-

ification by introducing a novel approach for image analysis of

eterochromatin domains in 3D fluorescence microscopy images.

he pericentric heterochromatin regions studied here in mouse fi-

roblasts appear as bright fluorescent foci under the microscope

 Fig. 1 , left). To investigate heterochromatin formation and asso-

iated epigenetic mechanisms, these foci need to be accurately

egmented and quantified. The formation process is connected

ith the dynamic recruitment of chromatin modifiers like the his-

one methyltransferases Suv39h1/h2 and Suv4-20h1/h2 or the het-

rochromatin protein 1 (HP1) isoforms ( Hahn et al., 2013, Müller-

tt et al., 2014 ). To study the spatial and temporal dynamics of

roteins in heterochromatin regions, multichannel 3D images show-

ng foci of DAPI-stained DNA in one channel and foci of fluo-

escently labeled proteins in additional channels can be acquired

 Fig. 1 ). Manual extraction of quantitative 3D information about

oci, however, is difficult and highly time-consuming. On the other

and, computer-controlled microscopy systems enable to automate

he acquisition of multichannel image data and can gather a large

umber of 3D images in short time ( Pepperkok et al., 2006 ). Hence,

utomated image analysis approaches are required, which can ex-

ract the relevant information from multichannel 3D images by ac-

urate 3D foci segmentation. 

The automated segmentation of heterochromatin foci, however,

s challenging for several reasons. In contrast to other subcellu-

ar structures (e.g., endoplasmic reticulum exit sites ( Matula et al.,

010 ) or telomeres ( Wörz et al., 2010, Osterwald et al., 2015 )) the

ize and 3D shape of heterochromatin foci are subject to a high de-

ree of variability. In particular, the 3D shape of foci can be highly

rregular, thus standard geometric models like spheres or ellipsoids

re not well suited for 3D shape representation. In addition, the

ppearance (intensity signal) of heterochromatin foci depends on

he distribution of the staining dyes and is impaired by photon

oise, non-uniform illumination, and by the blurring effect of the

icroscope described by the point spread function (PSF) ( Waters

t al., 2009 ). As a result, the intensity contrast of heterochromatin

oci with respect to the nucleus background varies significantly and

an be relatively low ( Fig. 1 ). The latter issue is particularly rele-

ant for the analysis of live cell microscopy images, where laser

ower needs to be kept to a minimum level to avoid photo dam-

ging the cells as well as bleaching the fluorescence signal during

ime course experiments. Hence, automatic approaches for 3D het-

rochromatin foci segmentation must cope with shape variations,

on-homogeneous image intensities, as well as varying and low

oci contrast. 

In previous work, different methods were used for segmenta-

ion of heterochromatin foci from 3D fluorescence microscopy im-

ges. Often, global intensity thresholds are applied (e.g., ( Beil et al.,

002, Beil et al., 2005, Böcker et al., 2006, Jost et al., 2011, Ivashke-
ich et al., 2011, Cantaloube et al., 2012 )), which are sensitive to in-

ensity variations. Thus, approaches based on global thresholds are

ften combined with other techniques, such as the top-hat trans-

orm ( Böcker et al., 2006, Ivashkevich et al., 2011, Cantaloube et al.,

012 ) or the H-dome transform ( Ivashkevich et al., 2011 ) to im-

rove the segmentation accuracy. Local thresholding within nuclei

egions ( Horáková et al., 2010, Eck et al., 2012 ) diminishes the ef-

ect of intensity variations between different nuclei, however, con-

rast variations between different foci in one nucleus are not ad-

ressed. In Andrey et al. ( Andrey et al., 2010 ), Poulet et al. ( Poulet

t al., 2015 ), foci segmentation is performed by partitioning the

ucleus into regions using the watershed transform and exclusion

f low-contrast regions using manually defined thresholds. How-

ver, in the case of high levels of image noise or foci with low

ontrast, the watershed transform tends to over-segmentation. In

zyubachyk et al. ( Dzyubachyk et al., 2010 ), foci segmentation is

erformed by determining foreground voxels based on energy min-

mization using graph cuts within regions around the foci. How-

ver, as in the aforementioned approaches, segmentation is limited

o the discrete voxel raster, and the blurring of the imaging process

escribed by the microscope’s PSF is not incorporated. In contrast,

D parametric intensity models describe the shape and intensities of

 structure by means of an analytic function, and allow incorpora-

ion of the image blurring as well as a priori information on foci

ppearance to improve the segmentation accuracy. For 3D segmen-

ation, the model function is directly fitted to the image intensi-

ies within a 3D region-of-interest (ROI). Parametric intensity mod-

ls were previously used for heterochromatin analysis ( Eck et al.,

012 ) and analysis of other subcellular structures ( Thomann et al.,

002, Wörz et al., 2010 ). However, there only regularly shaped

odels (e.g., spheres and ellipsoids) were used. Furthermore, 3D

hape analysis of the foci was not considered, but provides addi-

ional insights into the heterochromatin formation process. 

In this paper, we present a novel approach for accurate 3D

odel-based segmentation and 3D shape analysis of heterochro-

atin foci from multichannel 3D fluorescent microscopy images.

ur approach employs a new 3D parametric intensity model,

hich is based on a spherical harmonics (SH) shape representa-

ion. Compared to previous intensity models, the new model en-

bles to capture and analyze highly irregular 3D foci shapes. In

revious work on 3D segmentation from biomedical images, differ-

nt types of deformable models based on SH parametrization were

sed, for example, active shape models ( Székely et al., 1996, Kele-

en et al., 1996 ), statistical shape models ( Kelemen et al., 1999,

utar et al., 2006 ), and models combined with level set segmen-

ation ( Baust et al., 2010 ). Such approaches were used, for ex-

mple, for the segmentation of brain structures from MR images

 Székely et al., 1996, Kelemen et al., 1999 ) or the segmentation

f cell nuclei ( Kelemen et al., 1996, Marshall et al., 1996 ), how-

ver, 3D intensity models were not used and segmentation of het-

rochromatin or associated proteins was not considered. In this

ork, we use SH to formulate a 3D parametric intensity model,

hich describes both shape and intensities of heterochromatin

oci. For 3D segmentation of heterochromatin foci in microscopy

mages, the proposed SH intensity model is directly fitted to the

mage intensities by least-squares minimization. Based on the seg-

entation result, the determined SH expansion coefficients are ex-

loited for analyzing the 3D shape of the foci. SH shape analy-

is was previously used, for example, for brain structures in Gerig

t al. ( Gerig et al., 2001 ), Styner et al. ( Styner et al., 2004 ), for

ung nodules in El-Baz et al. ( El-Baz et al., 2011 ), for cells in

hairy et al. ( Khairy et al., 2010 ), Ducroz et al. ( Ducroz et al.,

012 ), Du et al. ( Du et al., 2013 ), and for cell nuclei in Singh

t al. ( Singh et al., 2011 ), however, approaches for characterizing

he 3D shape of heterochromatin foci have not yet been intro-

uced. Furthermore, the aforementioned approaches determine a
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voxel-based ( Styner et al., 2004, Khairy et al., 2010, Singh et al.,

2011 ) or mesh-based ( El-Baz et al., 2011, Ducroz et al., 2012 ) seg-

mentation result, which is converted into a SH representation, of-

ten by employing the surface parametrization method proposed

in Brechbühler et al. ( Brechbühler et al., 1995 ). In our approach,

such a conversion is not necessary since we directly obtain an an-

alytic SH representation from segmentation by 3D model fitting.

We demonstrate that 3D shape analysis based on the computed

SH coefficients enables distinguishing different foci shapes and an-

alyzing temporal shape changes. This work combines and extends

our previous conference papers ( Eck et al., 2013, Eck et al., 2014 ).

Compared to that work, we have improved the automatic initializa-

tion of the model and use a Hessian-based multiscale approach for

automatic estimation of a suitable 3D ROI for model fitting. Also,

we describe the SH intensity model in more detail and present im-

provements on the computational efficiency. In addition, we have

conducted a more comprehensive performance evaluation, in par-

ticular, we included a validation study based on 3D synthetic im-

age data. We also successfully applied the approach to real 3D

static and 3D dynamic image data and compared the results with

previous approaches. 

This paper is organized as follows. In Section 2 , we introduce

our 3D SH intensity model for representing the 3D shape and in-

tensities of heterochromatin foci. Section 3 describes the approach

for automatic 3D foci segmentation based on 3D model fitting. In

Section 4 , we present our approach for 3D shape analysis based

on the SH expansion coefficients determined by model fitting. Ex-

perimental results for synthetic and real 3D image data are pre-

sented in Section 5 . Finally, in Section 6 we discuss and conclude

the work. 

2. 3D spherical harmonics intensity model 

In this section, we introduce a 3D spherical harmonics (SH) in-

tensity model for analytic representation of the shape and inten-

sities of heterochromatin foci in 3D microscopy images. First, we

describe the 3D SH shape model ( Section 2.1 ), and then we for-

mulate a 3D SH intensity model ( Section 2.2 ). The 3D SH intensity

model provides the basis for both automatic 3D foci segmentation

( Section 3 ) and 3D foci shape analysis ( Section 4 ). 

2.1. 3D spherical harmonics shape model 

We represent the 3D shape of fluorescent foci using a spherical

harmonics series expansion. Spherical harmonics (SH) form a com-

plete set of basis functions defined on the sphere, enabling spher-

ical functions to be expanded into a series of weighted SH. The

complex-valued SH basis functions of degree l and order m are de-

fined by (e.g., ( Arfken et al., 2005 )) 

 

m 

l (θ, ϕ) = N 

m 

l P m 

l ( cos θ ) · e imϕ (1)

where P m 

l 
(·) is an associated Legendre polynomial (see

Appendix A ), θ ∈ [0, π ] and ϕ ∈ [0, 2 π ) are the inclination

and azimuth angles, respectively, and i = 

√ −1 is the imaginary

unit. The normalization coefficients N 

m 

l 
= 

√ 

2 l+1 
4 π

(l−m )! 
(l+ m )! 

are chosen

such that the SH basis functions are orthonormal with respect to θ
and ϕ ( Arfken et al., 2005 ). In our application, we assume the 3D

region F of a fluorescent focus to be star-shaped , i.e., a point x 0 ∈ F

exists such that each ray originating from x 0 intersects the surface

of F once. If x 0 is the origin of a spherical coordinate system, then

the surface of F can be described by a 3D radius function r ( θ , ϕ).

Using (1) , r ( θ , ϕ) can be written as a SH expansion of the form 

r(θ, ϕ, c ) = 

∞ ∑ 

l=0 

l ∑ 

m = −l 

c m 

l · Y m 

l (θ, ϕ) (2)
here c = (c 0 
0 
, . . . , c ∞ ∞ 

) T denotes the vector of expansion coeffi-

ients, i.e., the weights of the SH basis functions. For more infor-

ation about the mathematical foundations of SH and SH series

xpansion, see, for example, Courant and Hilbert ( Courant et al.,

953 ), Arfken et al. ( Arfken et al., 2005 ). Since the radius of foci is

eal-valued, we employ the real-valued SH basis functions ( Courant

t al., 1953 ) 

 

m 

l (θ, ϕ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

√ 

2 N 

m 

l 
P m 

l 
( cos θ ) cos (mϕ) m > 0 

N 

0 
l 

P 0 
l 
( cos θ ) m = 0 

√ 

2 N 

| m | 
l 

P 
| m | 
l 

( cos θ ) sin (| m | ϕ) m < 0 . 

(3)

nalogously, we distinguish between three cases of the expansion

oefficients c m 

l 
: 

 

m 

l = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

a m 

l 
m > 0 

a 0 
l 

m = 0 

b m 

l 
m < 0 . 

(4)

ased on (3) and (4) , and by defining a maximum series degree

 max , the foci radius function r ( θ , ϕ) can be rewritten as the trun-

ated real-valued SH expansion 

 SH (θ, ϕ, a , b ) = 

l max ∑ 

l=0 

[ 
a 0 l N 

0 
l P 

0 
l ( cos θ ) 

+ 

l ∑ 

m =1 

(
a m 

l cos (mϕ) + b m 

l sin (mϕ) 
)

×
√ 

2 N 

m 

l P m 

l ( cos θ ) 
] 
. (5)

n the remainder of the paper, we use the more compact notation

 SH ( θ , ϕ) for the SH shape model in (5) . A specific 3D shape can be

odeled by adjusting the coefficient vectors a = (a 0 
0 
, ..., a l max 

l max 
) T and

 = (b 1 1 , ..., b 
l max 

l max 
) T . With increasing value of l max , the number of SH

asis functions, given by (l max + 1) 2 , also increases and more com-

lex shapes can be described. Fig. 2 shows the influence of differ-

nt coefficients on the SH shape model. In this example, we used

 

0 
0 

= 10 and the coefficients displayed below the subfigures, while

ll other coefficients were set to zero. 

.2. 3D parametric intensity model 

The real-valued SH expansion in (5) describes the radius of a

tar-shaped object and can represent the 3D shape of a heterochro-

atin focus in confocal microscopy images. To include information

bout the signal intensities in the vicinity of a focus, we can for-

ulate an ideal step-shaped 3D intensity model 

 SH,ideal (x ) = 

{
1 if 0 ≤ r ≤ r SH (θ, ϕ) 

0 otherwise 
(6)

here x = (x, y, z) T denotes the 3D position and r = r(x ) denotes

he radius at x . Note that g SH, ideal is evaluated using Cartesian co-

rdinates x , thus facilitating the computation of the model inten-

ity value at an image position for model fitting. The spherical pa-

ameters r, θ , and ϕ for computation of g SH, ideal and r SH ( θ , ϕ) are

efined by 

r(x ) = 

√ 

x 2 + y 2 + z 2 

θ (x ) = cos −1 
(

z 

r(x ) 

)

ϕ(x ) = tan 

−1 
(

y 

x 

)
. 

(7)
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Fig. 2. Renderings of the 3D SH shape model demonstrating the shape influence of different SH coefficients. We used a 0 0 = 10 and the coefficients displayed below the 

subfigures, while all other coefficients were set to zero. 
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owever, the intensity profiles of heterochromatin foci in our

mage data cannot be well represented by an ideal step-shaped

odel. This is due to the blurring effect of the imaging process de-

cribed by the PSF of the microscope. Previous work demonstrated

hat the 3D PSF of confocal microscopes can be well modeled by a

D Gaussian function (e.g., ( Thomann et al., 2002 )). Hence, to rep-

esent the foci intensities more accurately, we use a convolution of

 SH, ideal with a 3D Gaussian function 

 

3 D 
σ (x ) = 

(
1 √ 

2 πσ

)3 

exp 

(
−x 2 + y 2 + z 2 

2 σ 2 

)
, (8) 

pecified by the standard deviation σ . Since a closed-form solution

o the convolution of g SH, ideal with a 3D Gaussian function G 

3 D 
σ is

ot known, we approximate the solution using a convolution with

 1D Gaussian function G 

1 D 
σ along 1D lines, which yields the 3D SH

ntensity model 

 SH (x ) = �σ (r + r SH (π − θ, ϕ + π)) − �σ (r − r SH (θ, ϕ)) , (9)

here �σ ( x ) = �( x σ ) is the Gaussian error function with 

(x ) = 

∫ x 

−∞ 

G 

1 D 
σ (ξ ) dξ = 

∫ x 

−∞ 

1 √ 

2 π
exp 

(
−1 

2 

ξ 2 
)

dξ . (10)

onsider a point x where the model is evaluated, then g SH rep-

esents the Gaussian smoothed 1D intensity profile along the line

hich intersects the model center and x (see Fig. 3 ). The full

idth at half maximum (FWHM) of the intensity profile is given by

he 3D coordinates ( r SH ( θ , ϕ), θ , φ) T and (r SH (π − θ, ϕ + π) , π −
, ϕ + π) T , i.e., the intersection points of the line with the 3D sur-

ace of the heterochromatin focus. If x is located close to the model

enter, g SH ∈ [0, 1] is close to 1. If x is located outside the FWHM

outside the surface), g SH approaches zero. We further include a

D translation x 0 = (x 0 , y 0 , z 0 ) 
T to model the global position of the

oci within the image, as well as background and foreground inten-

ity levels a 0 and a 1 to obtain the final 3D SH intensity model 

 M,SH (x , p ) = a 0 + (a 1 − a 0 ) g SH ( x − x 0 ) (11)

here p represents the model parameter vector 

 = (a , b , a 0 , a 1 , σ, x 0 ) 
T . (12)

he total number of model parameters depends on l max and is

iven by | p | = (l max + 1) 2 + 6 . In comparison to other parametric

hape models (e.g., based on ellipsoids ( Wörz et al., 2006 )), ad-

itional parameters to represent, for example, rotation, bending,

r tapering are not required, since the SH coefficients encode all

hape information including the 3D orientation (see Fig. 2 ). 

. Automatic 3D foci segmentation 

In this section, we describe how the spherical harmonics (SH)

ntensity model in (11) is utilized for 3D segmentation of het-

rochromatin foci. The segmentation approach is fully automatic

nd consists of four steps detailed below. First, 3D foci detection is

erformed to obtain coarse foci positions. Second, the size of the

oci is estimated to determine the 3D region-of-interest (ROI) for
odel fitting. Using the results of foci detection and ROI size de-

ermination, the 3D SH intensity model is initialized for each de-

ected focus. By solving a least-squares minimization problem, the

odel is then fitted to the image intensities and optimal values of

he model parameters are determined. Example results of different

rocessing steps are shown in Fig. 4 . 

.1. 3D detection of heterochromatin foci 

For automatic initialization of the 3D SH intensity model, we

etect the position of heterochromatin foci by searching for lo-

al intensity maxima within 7 × 7 × 7 cubic ROIs. The size of

he ROIs was chosen in accordance with the smallest foci in our

D image data. Using larger ROIs generally increases the num-

er of false negatives. We denoise the image beforehand using a

D Gaussian filter with standard deviation σ d and suppress back-

round pixels with intensities below a clipping threshold. Since the

oci contrast varies for different cell nuclei and images, an opti-

al clipping threshold for each cell nucleus is automatically com-

uted based on the 3D intensity histogram h i of the i th nucleus

y T clip,i = μi + c d · σi , where μi and σ i denote the mean and stan-

ard deviation of h i , respectively, and c d is a constant. For the stan-

ard deviation of the Gaussian filter σ d and the constant c d we

sed fixed values for all images in an experiment (e.g., we used

d = 1 . 75 and c d = 1 for the image in Fig. 4 ). Smaller values of

d and c d lead to a better detection of small and dark foci and

educe the number of false negatives, however, more false posi-

ives occur if the values are chosen too small. In our experiments,

e found a good compromise for σ d and c d based on visual in-

pection of the detection result for heterochromatin foci in several

ell nuclei. To determine the 3D intensity histogram of a cell nu-

leus, we perform cell nucleus segmentation by 3D multilevel Otsu

hresholding with prior 3D Gaussian filtering (we used a standard

eviation of σd,n = 3 ) and hole filling. To separate touching nuclei,

e use a distance transform and a watershed transform. Exam-

le results of nucleus segmentation and foci detection are shown

n Fig. 4 b. 

.2. Determination of 3D regions-of-interest for model fitting 

The size of the 3D ROI used for model fitting influences the suc-

ess of the fitting process and the segmentation accuracy. If the

OI is too large, neighboring foci can have a negative influence on

he fitting result. If the ROI is too small (e.g., smaller than the het-

rochromatin focus itself), we might not include enough image in-

ormation and model fitting may become unreliable. Since the size

f the heterochromatin foci varies significantly, it is not appropri-

te to use a constant ROI size for all foci. In our previous work

 Eck et al., 2013, Eck et al., 2014 ), we addressed this by repeated

odel fitting using a range of different ROIs (starting from a user

efined minimum ROI radius), and used the segmentation result

f the smallest ROI for which model fitting was successful. How-

ver, in the case of the SH intensity model, this scheme does not

lways yield good segmentation results. Hence, we propose a dif-

erent strategy based on a multiscale approach, which yields more
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Fig. 3. Example of a 3D parametric intensity model computed from a real 3D microscopy image: (a) 3D shape model, (b) 1D intensity profile along the line shown in (a) 

without (dashed) and with convolution (solid) with a Gaussian function, as well as (c) 2D intensity profile of the xy -plane at z = 0 . 

Fig. 4. Automatic 3D segmentation results shown as maximum intensity projec- 

tions (MIPs): (a) Original 3D microscopy image of a mouse embryonic fibroblast 

cell nucleus with DAPI staining, (b) results of cell nucleus segmentation (blue con- 

tour) and spot detection (dots), (c) 3D foci segmentation results by 3D SH intensity 

model fitting, and (d) rendering of 3D nucleus and 3D foci segmentation results. 
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accurate segmentation results. The approach was previously used

in Frangi et al. ( Frangi et al., 1998 ) for enhancement of tubular

structures in medical image data, and in Jaeger et al. ( Jaeger et al.,

2010 ) for blob detection in microscopy images of subcellular struc-

tures. Here, we utilize the approach to determine a suitable ROI for

model fitting based on the size of a heterochromatin focus using

the intensity information in the neighborhood of the detected fo-

cus position. To analyze the image intensities g ( x ), we compute the

Hessian matrix H(g, σs )(x ) for the scale σ s . For calculating the re-

quired second order partial derivatives in H(g, σs )(x ) , we use con-

volutions with Gaussian derivative filters. For example, for the first
lement we use 

(x ) ∗ ∂ 2 

∂x 2 
G 

3 D 
σs 

(x ) (13)

ith the 3D Gaussian function G 

3 D 
σ (x ) in (8) . We then compute the

atio 

 (x , σs ) = 

| λ3 (x , σs ) | √ | λ1 (x , σs ) λ2 (x , σs ) | 
(14)

here λk denotes the k th eigenvalue of the Hessian matrix sorted

y their magnitude in descending order (| λ1 | ≥ | λ2 | ≥ | λ3 |) ( Frangi

t al., 1998 ). B ( x , σ s ) is large if the 3D neighborhood of x forms

 blob-like structure with a radius of about σ s . In our case, the

adius of a heterochromatin focus is determined as the scale σ s 

or which B ( x , σ s ) is maximal. However, σ s is not a good choice

or the size of the ROI, since the model represents foreground as

ell as background intensities, and therefore model fitting is more

ccurate for larger ROIs which contain more image background. A

etter choice is using a ROI radius which is twice as large as σ s 

nd can be computed by 

ˆ 
 ROI = arg max R min ≤R ≤R max 

B 

(
x , 

R 

2 

)
(15)

here ˆ R ROI , R min , and R max are integer values given in voxels. R min 

nd R max are chosen based on the expected range of foci sizes

nd remain fixed for all images in an experiment (e.g., we used

 min = 4 and R max = 11 for the image in Fig. 4 ). To account for the

ypical anisotropic resolution in microscopic image data (in con-

ocal microscopy images, the resolution in z -direction is typically

ower than within the xy -plane), we scale ˆ R ROI in z -direction ac-

ording to the voxel resolution, so that the same physical sizes

re considered. We thus use a fitting ROI of ellipsoidal shape with

emi-axes ˆ R ROI = ( ̂  R ROI , ˆ R ROI , v xz ̂  R ROI ) 
T , where v xz is the ratio be-

ween the physical voxel sizes in x - and z -direction. Note that com-

ared to Frangi et al. ( Frangi et al., 1998 ) and Jaeger et al. ( Jaeger

t al., 2010 ), where the Hessian-based analysis is performed for

ach voxel, in our approach we analyze the image intensities only

t the detected foci positions which significantly reduces the com-

utation time. 

.3. Model initialization 

The parameter vector p in (12) of the SH intensity model

s automatically initialized in the following way. The translation
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arameters x 0 are initialized using the detected foci positions (see

ection 3.1 ). The size and 3D shape of the model are controlled by

he SH coefficients a m 

l 
and b m 

l 
. We initialize the model with the

hape of a sphere by setting all SH coefficients to zero except a 0 
0 
,

hich determines the radius of the sphere (the radius is given by

 

0 
0 

a 0 
0 
). To initialize a 0 

0 
, we use the estimated size of the foci (see

ection 3.2 ). The parameter σ is initialized based on the blurring

bserved in the image data. We used σ ∈ [0.5, 1.0] in our experi-

ents. The foreground intensity a 1 is initialized with the maximal

ntensity value within a radius of two voxels around the detected

ocus position x 0 . We found that using the maximal intensity value

s more robust to image noise than, for example, using the inten-

ity value at the detected focus position. The background intensity

 0 is initialized with the minimal intensity value within the fitting

OI. 

.4. 3D least-squares model fitting 

To determine the model parameters p in (12) , the 3D SH in-

ensity model g M, SH ( x, p ) in (11) is directly fitted to the image

ntensities g ( x ) by solving a least-squares minimization problem.

n contrast to other approaches using SH models, our approach

oes not require additional image features (e.g., image gradients

 Székely et al., 1996, Kelemen et al., 1996 ) or region-based terms

 Baust et al., 2010 )) to estimate the model parameters. Instead, we

irectly exploit the intensity information within ellipsoidal ROIs at

he detected positions of the foci, using the objective function 

2 (p ) = 

∑ 

x ∈ ROI 

(g M,SH (x , p ) − g(x )) 2 −→ min . (16)

or minimization we use the method of Levenberg and Marquardt

 Marquardt et al., 1963 ) which incorporates first order partial

erivatives of g M, SH with respect to the model parameters p . All

artial derivatives of g M, SH have been derived analytically and are

rovided in Appendix B . The minimization is performed for each

etected heterochromatin focus. For large values of l max , fitting

ll model parameters p = (a , b , a 0 , a 1 , σ, x 0 ) 
T at once can render

he fitting process unstable. In addition, it is advantageous for 3D

hape analysis if a geometric reference point such as the center of

ass x m 

is used for the model center x 0 (see also Section 4 ). To

mprove the robustness of model fitting and to align x 0 with x m 

,

e use a stepwise procedure for estimating the model parameters

hich consists of multiple fitting phases. In the first phase, we es-

imate the position x 0 and the SH coefficients up to the second

egree, while fixing all other parameters. This allows translation,

caling, and low-frequency shape deformations of the model and

ields a first approximation of the 3D shape of a focus. In the sec-

nd phase, we additionally estimate the intensity parameters a 0 
nd a 1 and the higher-degree SH coefficients to allow more com-

lex shape deformations of the model and to accurately capture

he 3D shape of a focus. Fig. 5 demonstrates how the 3D shape

volves during the first and second fitting phase for a heterochro-

atin focus in a real 3D image. Based on the result of the sec-

nd phase, we compute x m 

and set x 0 to x m 

. We then repeat the

econd fitting phase while fixing x 0 . In the final fitting phase, we
ig. 5. Evolution of the shape of the 3D SH intensity model as a function of the iteratio

nitial shape is shown on the left (iteration 0). Iterations 1 to 11 belong to the first fitting
etermine the smoothing parameter σ while fixing all other pa-

ameters. 

.5. Improvement of the computation time 

In the following, we describe improvements of the proposed

pproach which reduce the computation time. For model fitting

ccording to (16) , in each iteration of the minimization, the 3D

H intensity model in (11) is evaluated at every position x of the

D ROI. In a typical example, the minimization requires 25 itera-

ions and a ROI with semi-axes ˆ R = (10 , 10 , 7) T is used, and thus

11) is evaluated about 80,0 0 0 times. To reduce the computation

ime we can exploit the fact that the normalization coefficients N 

m 

l 
n (5) do not depend on x and thus can be computed in advance.

n addition, for efficient computation of the higher-order associated

egendre polynomials P m 

l 
(x ) in (5) , well-known recurrence formu-

as can be used (e.g., ( Arfken et al., 2005 )). Likewise, sin ( m ϕ) and

os ( m ϕ) in (5) can be efficiently computed for m > 2 using the fol-

owing trigonometric relations (recurrence formulas for Chebyshev

olynomials and related relations in, e.g., ( Arfken et al., 2005 )) 

cos (mx ) = 2 cos x · cos ((m − 1) x ) − cos ((m − 2) x ) , 

sin (mx ) = 2 cos x · sin ((m − 1) x ) − sin ((m − 2) x ) 
(17) 

ote that ( 17 ) only reduces the computational cost for l max > 2 ,

owever, in real scenarios with l max ∈ [4 , 6] we already achieve

bout 10% reduction of the computation time. Moreover, in ( 9 ) and

 5 ), the relations 

os (m (ϕ + π)) = 

{− cos (mϕ) if m is odd 

cos (mϕ) if m is even 

(18)

nd analogous for sin (m (ϕ + π)) , as well as 

 

m 

l ( cos (π − θ )) = 

{−P m 

l 
( cos θ ) if (l + m ) is odd 

P m 

l 
( cos θ ) if (l + m ) is even 

(19) 

an be used. Overall, using the improvements in (17) , ( 18 ), and

 19 ), we achieve a reduction of the computation time of about 25%.

. 3D foci shape analysis 

In this section, we describe how the 3D shape of heterochro-

atin foci can be analyzed based on the 3D SH intensity model

 M, SH in ( 11 ). By fitting the 3D SH intensity model to the image

ata, the SH coefficients a m 

l 
and b m 

l 
are automatically determined.

epending on the degree l , the coefficients a m 

l 
and b m 

l 
control the

nfluence of the SH basis functions of different frequencies and

hus contain information about the frequency components which

etermine the 3D shape of the fitted heterochromatin focus (see

lso Fig. 2 ). However, the 3D shape of a focus can be well repre-

ented by different combinations of a m 

l 
, b m 

l 
, and the model center

 0 . For example, x 0 could be chosen at the center of mass or at

he border of a focus, and for both cases different coefficients a m 

l 
nd b m 

l 
exist that well represent the focus. To avoid such ambigu-

ty, we use the center of mass x m 

for the model center x 0 (see also

ection 3.4 ). Furthermore, the values of a m and b m depend on the

l l 

n of the model fitting process for a heterochromatin focus in a real 3D image. The 

 phase, and iterations 12 to 16 belong to the second fitting phase. 
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a b c d

Fig. 6. Heterochromatin foci from real 3D microscopy images and bar plot of the 

shape descriptor s ( l ) for different SH degrees l = 2 , 3 , 4 , 5 . (a-d) show the 3D shapes 

of (a) a focus with sphere-like shape, (b) a focus with ellipsoid-like shape, and (c) 

and (d) foci with more complex shapes. 

Fig. 7. Segmentation results of the proposed approach for synthetic 3D image data: 

Mean Dice coefficient D (averaged over all 18 foci) as a function of the image noise 

level σ n , and different maximum series degrees l max for the SH intensity model. 
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size and rotation of a focus. To solely describe 3D shape properties,

and to enable shape comparison between different foci, we use a

SH shape descriptor for g M, SH which reads as 

s (l) = 

l ∑ 

m =0 

| ̂  a m 

l | 2 + 

l ∑ 

m =1 

| ̂ b m 

l | 2 (20)

where ˆ a m 

l 
= a m 

l 
/a 0 

0 
and 

ˆ b m 

l 
= b m 

l 
/a 0 

0 
are the size normalized SH co-

efficients, i.e., ˆ a m 

l 
and 

ˆ b m 

l 
do not change when changing the size of

g M, SH . s ( l ) denotes the energy of the SH function at different de-

grees l . Since this energy does not change when g M, SH is rotated,

s ( l ) is a rotationally invariant shape descriptor ( Kazhdan et al.,

2003, Gu et al., 2004 ). Thus, s ( l ) does not depend on the size and

rotation of a focus. 

For each heterochromatin focus f , we compute the vector s f =
{ s f (1) , s f (2) , . . . , s f (l max ) } consisting of values of the shape de-

scriptor s ( l ) for different degrees l . Heterochromatin foci with a

sphere-like shape have relatively small values of s ( l ). Foci with an

ellipsoid-like shape have large values for s (2). Foci with more com-

plex shape characteristics have relatively large values of s ( l ) for l ∈
[2, l max ], and hence can be distinguished from foci with simpler

shape. Fig. 6 shows examples of 3D shapes and corresponding val-

ues of s ( l ) for four foci from real 3D microscopy image data. 
. Experimental results 

To analyze the performance of our approach, we used 3D syn-

hetic and 3D real static image data, as well as 3D real dynamic

ime-lapse images. 

.1. Synthetic 3D image data 

We generated the 3D images for our synthetic experiments

ased on manual binary segmentations of heterochromatin by bio-

ogical experts. This has the advantage that realistic 3D shapes are

mployed. We used 18 foci with different size and shape character-

stics. The foreground and background intensities of the synthetic

ata were set to a 1 = 100 and a 0 = 30 , respectively. To simulate

he blurring of the imaging system, we applied a 3D Gaussian fil-

er with standard deviation σ = 0 . 75 which yields an intensity pro-

le typical for the heterochromatin foci in our real 3D image data.

n addition, to evaluate the robustness of our approach to image

oise, we used different levels of additive Gaussian noise speci-

ed by the standard deviations σn = 0 , 5 , 10 , 20 , 30 , 40 , 50 . The cor-

esponding signal-to-noise ratios (SNRs) are given by SNR = (a 1 −
 0 ) /σn = ∞ , 14 . 0 , 7 . 0 , 3 . 5 , 2 . 3 , 1 . 8 , 1 . 4 . In total, we used 126 syn-

hetic 3D images. 

In the first synthetic experiment, we examined how the choice

f the parameter l max (which specifies the maximum SH degree

nd thus the overall number of model parameters) affects the

egmentation performance of our approach. As l max increases, the

H intensity model can represent more shape details but model

tting becomes less robust and computationally more expensive.

s performance measure we used the Dice coefficient D (G, S) =
 | G ∩ S| / | G | + | S| , where G and S denote the binary volumes of the

ynthetic ground truth and the segmentation result, respectively.

ig. 7 shows the mean Dice coefficient D (averaged over all con-

idered 18 foci) as a function of the noise level σ n . Our results

how that D is relatively low if l max ≤ 3 , because foci with complex

D shape cannot be represented well. In contrast, higher values of

 max allow representing more shape details and yield better results

or low noise levels ( σ n ≤ 20), however, for l max ≥ 7 , D decreases

ignificantly for high noise levels ( σ n ≥ 30). Hence, we identified

 max = 4 , 5 , 6 as a good choice for most foci in our experiments,

ince a relatively high accuracy is obtained and the result is rela-

ively stable for high noise levels. For relatively small foci (volume

maller than 200 voxels), l max = 3 is a good choice, because such

oci generally exhibit few shape details and a relatively small ROI

s used for fitting. 

In the second experiment, we compared the results of our ap-

roach using l max = 5 with three other approaches: 1) 3D Gaus-

ian model fitting ( Wörz et al., 2010 ) ( GAUSS ); 2) multiscale de-

omposition using undecimated wavelet transform and threshold-

ng of the wavelet bands ( Olivo-Marin et al., 2002 ) ( UDWT ) im-

lemented in the software Icy ( de Chaumont et al., 2012 ), which

as previously used, for example, for segmentation of endosomes

r centrosomes in cells ( Pop et al., 2013 ); and 3) top-hat trans-

orm and Yen thresholding Yen et al. ( Yen et al., 1995 ) ( TH+Y ),

hich was proposed for segmentation of heterochromatin foci in

antaloube et al. ( Cantaloube et al., 2012 ). Our approach based on

he SH intensity model is denoted as SHIM in the following. Since

H+Y yielded a relatively large number of false positives and holes

ithin the foci volumes, foci smaller than 15 voxels were excluded

nd hole filling was applied to improve the segmentation. 

Fig. 8 shows for all approaches maximum intensity projections

MIPs) of the 3D segmentation results for one focus for different

oise levels σ n . Fig. 9 gives the mean Dice coefficients D (averaged

ver all 18 foci) as a function of σ n . Our results show that GAUSS is

obust to noise, however, it fails to capture fine shape details and

hus yields smaller values of D compared to the other approaches
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Fig. 8. Maximum intensity projections (MIPs) of synthetic 3D data with differ- 

ent image noise levels σ n and segmentation results of 3D Gaussian model fitting 

(GAUSS), multiscale decomposition using undecimated wavelet transform (UDWT), 

top-hat filtering and Yen thresholding (TH+Y), and our approach based on the SH 

intensity model (SHIM). 

Fig. 9. Segmentation results of different approaches for synthetic 3D image data as 

a function of the image noise level σ n : Mean Dice coefficient D (averaged over all 

18 foci) obtained by 3D Gaussian model fitting (GAUSS), multiscale decomposition 

using undecimated wavelet transform (UDWT), top-hat filtering and Yen threshold- 

ing (TH+Y), and our approach based on the SH intensity model (SHIM). 

f  

u  

U  

e  

a  

c  

f

5

 

a  

t  

o  

d  

s

5  

3

 

c  

n  

f  

m  

o  

s  

a  

e  

a  

2  

s  

s  

w  

a  

a  

w  

a  

a  

s  

r  

f  

o  

w  

a  

H

 

c  

t

w  

t  

a  

T  

m  

e  

o  

t  

d  

t  

t  

m  

t  

o  

e  

D  

t  

D  

2  

t  

t  

t  

c  

e  

1  

t  

D  

e  

C  

a  

u  

C  

a  

S  

a  

s  

t  

∈  

m  
or low noise levels ( σ n < 20). TH+Y yields relatively good val-

es for low noise levels, but D degrades significantly for σ n ≥ 20.

DWT yields relatively good results for most foci if σ n ≤ 30, how-

ver, the volume of some relatively large foci is underestimated,

nd D degrades for σ n > 30. SHIM yields the best overall result, it

an cope well with shape details, and relatively large values of D

or all noise levels are obtained. 

.2. Real 3D static microscopy image data 

We also applied our approach to real 3D static microscopy im-

ges of mouse embryonic fibroblast cells from two experiments. In

he first experiment, we evaluate the segmentation performance

f our approach for heterochromatin foci in two-channel 3D image

ata. In the second experiment, we investigate our approach for 3D

hape characterization of foci from different cell lines. 

.2.1. Automatic segmentation of heterochromatin foci in two-channel

D image data 

We applied our approach to 524 real 3D two-channel mi-

roscopy images (512 × 512 × 41 voxels). Foci in the DAPI chan-

el mark DNA-dense regions (i.e., pericentric heterochromatin) and

oci in the HP1 α channel mark high concentrations of heterochro-

atin protein 1 α ( Fig. 1 ). To cope with the strongly varying size

f the foci, we distinguish between small and large foci and use a
eries degree l max of 3 and 5, respectively. For comparison, we also

pplied two other approaches based on parametric intensity mod-

ls: GAUSS and an approach based on a combination of region-

daptive segmentation and 3D Gaussian model fitting ( Eck et al.,

012 ) ( RA+GA ). For small foci, GAUSS yielded relatively good re-

ults, however, it fails to accurately segment large foci of irregular

hape. RA+GA generally yields decent results, but does not cope

ell with intensity inhomogeneities in the cell nucleus, e.g., rel-

tively dark foci pixels were not segmented. In comparison, our

pproach based on the 3D SH intensity model (SHIM) copes well

ith foci of different sizes and highly irregular shapes and yields

 better overall result. We also compared the results to the UDWT

nd the TH+Y approach. As for the synthetic experiments, exclu-

ion of small foci and hole filling was performed for TH+Y. The

esults after these additional steps were relatively good for most

oci, however, over- and under-segmentation occurred in the case

f high image noise. UDWT yielded good results, but segmentation

as less accurate compared to RA+GA and SHIM. Fig. 10 shows ex-

mples for the results of all 3D segmentation approaches in the

P1 α and DAPI channels. 

To quantify the segmentation accuracy, we computed the Dice

oefficient between the 3D segmentation results and expert ground

ruth. We also computed the Hausdorff distance 

H(G, S) = max { h (G, S) , h (S, G ) } , 
h (G, S) = max 

g ∈ G 
min 

s ∈ S 
|| g − s || 

here G and S denote the binary volumes of the expert ground

ruth and the segmentation result, respectively, g denotes an im-

ge position inside G , and s denotes an image position inside S .

o establish the ground truth, two expert observers manually seg-

ented 243 foci volumes from four two-channel 3D images. For

ach automatic approach we experimentally determined a best set

f parameters and used them for the whole data. Mappings be-

ween the foci in the ground truth and the automatic results were

etermined in 3D based on the minimum distance of the cen-

ers of mass. Table 1 shows mean values D and standard devia-

ions σ D of the Dice coefficient D for foci in the HP1 α and DAPI

icroscopy channel as well as for all foci. It can be seen that

he proposed approach (SHIM) yielded better results than previ-

us approaches compared to the ground truth of both experts. For

xample, using the ground truth of the first expert, SHIM yields

 = 0 . 712 and D = 0 . 671 for the HP1 α and DAPI channel, respec-

ively. The other approaches yield values of D ∈ [0 . 591 , 0 . 6 6 6] and

 ∈ [0 . 477 , 0 . 609] , thus SHIM leads to an improvement of 7% to

0% for HP1 α and 10% to 40% for DAPI. Using the ground truth of

he second expert, the improvement is 4% to 23% for HP1 α and 7%

o 98% for DAPI. Table 2 shows mean values H and standard devia-

ions σ H of the Hausdorff distance H for foci in the HP1 α and DAPI

hannel as well as for all foci. Using the ground truth of the first

xpert, SHIM leads to an improvement of 6% to 15% for HP1 α and

5% to 44% for DAPI. Using the ground truth of the second expert,

he improvement is 10% to 25% for HP1 α and 8% to 43% for DAPI.

epending on the ground truth data and the microscopy channel,

ither RA+GA or UDWT yield the second best result for D and H .

ompared to each of the second best results for D , SHIM leads to

n improvement of 7% or 8% (for all foci, see third row in Table 1 )

sing the ground truth of the first or second expert, respectively.

ompared to each of the second best results for H , SHIM leads to

n improvement of 8% of 12% (for all foci, see third row in Table 2 ).

ince manual 3D segmentation is difficult and the foci volumes

re relatively small (e.g., compared to nucleus volumes), relatively

mall differences between the segmentation result and the ground

ruth significantly decrease D , and inter-observer variabilities of D

 [0.4, 0.75] are typical. For example, dilating a typical 3D seg-

entation result of a medium-sized focus (volume of 296 voxels)
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Fig. 10. Maximum intensity projections (MIPs) of original 3D image data (left), and 3D automatic segmentation results of previous approaches (GAUSS, RA+GA, UDWT, TH+Y), 

and the proposed 3D SH intensity model (SHIM). 

Table 1 

Quantitative comparison of different automatic approaches for 3D foci segmentation in real 3D microscopy images with ground truth from 

two different experts: Mean D and standard deviation σ D of the Dice coefficient. Larger values of D are better, bold numbers highlight the 

best results. 

Inter-observer Automatic vs. first expert Automatic vs. second expert 

GAUSS RA+GA UDWT TH+Y SHIM GAUSS RA+GA UDWT TH+Y SHIM 

HP1 α foci D 0.651 0.632 0.666 0.602 0.591 0.712 0.651 0.686 0.672 0.579 0.713 

σ D 0.125 0.152 0.143 0.161 0.193 0.101 0.104 0.096 0.104 0.128 0.075 

DAPI foci D 0.595 0.607 0.609 0.598 0.477 0.671 0.548 0.543 0.568 0.308 0.610 

σ D 0.135 0.116 0.132 0.169 0.161 0.134 0.117 0.142 0.155 0.154 0.116 

All foci D 0.625 0.621 0.640 0.600 0.556 0.693 0.599 0.614 0.619 0.475 0.661 

σ D 0.132 0.137 0.140 0.164 0.190 0.119 0.122 0.141 0.142 0.192 0.110 

Table 2 

Quantitative comparison of different automatic approaches for 3D foci segmentation in real 3D microscopy images with ground truth from 

two different experts: Mean H and standard deviation σ H of the Hausdorff distance. Smaller values are better, bold numbers highlight the 

best results. 

Inter-observer Automatic vs. first expert Automatic vs. second expert 

GAUSS RA+GA UDWT TH+Y SHIM GAUSS RA+GA UDWT TH+Y SHIM 

HP1 α foci H 3.569 4.278 3.852 4.275 4.090 3.635 3.342 2.854 2.755 3.030 2.490 

σ H 2.878 3.344 3.194 3.362 3.344 3.351 1.926 1.421 1.316 1.353 0.848 

DAPI foci H 4.101 4.665 4.290 4.094 6.250 3.487 5.037 4.846 4.400 7.145 4.065 

σ H 2.179 2.848 2.656 2.528 8.184 1.926 2.829 2.462 2.174 6.326 2.056 

All foci H 3.815 4.449 4.048 4.194 4.759 3.568 4.202 3.857 3.590 4.616 3.289 

σ H 2.581 3.126 2.959 3.002 5.372 2.780 2.563 2.242 1.977 4.512 1.762 
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by 1 voxel and comparing the dilated result with the original re-

sult yields D = 0 . 493 . In our experiments, the mean inter-observer

variability for HP1 α and DAPI was D = 0 . 651 and D = 0 . 595 , re-

spectively (see Table 1 , third column). Thus, the results of SHIM

are in the range of the inter-observer variability or even better.

Analogously, the same holds true for the Hausdorff distance H .

The computation time of our approach (implemented in C/C++) de-

pends on the number of foci, the size of the ROI for model fitting,

and the number of model parameters (which depends on l max ).
or example, for a 3D two-channel image (512 × 512 × 41 vox-

ls) with 554 foci (both channels) in 8 cell nuclei, the computation

ime was about 3 min on an Intel Xeon CPU (2.67 GHz) running

inux. 

.2.2. Segmentation and shape analysis of heterochromatin foci in a 

nockout experiment 

We also applied our approach to real 3D image data of a

ene knockout study on how the Suv4-20h1/h2 histone methyl
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Fig. 11. Results of 3D foci segmentation using the proposed 3D SH intensity model (SHIM) for a wild-type nucleus (top) and a Suv4-20h1/h2 double-knockout nucleus 

(bottom): (a) Original 3D image data shown as maximum intensity projections (MIPs), (b) contour overlays of the 3D SH intensity model shown as MIPs, (c) rendering of 

the 3D shapes of the fitted models, (d) enlarged rendering of the 3D shapes of the foci marked by the circles in (a)-(c). 

Fig. 12. Results of 3D foci shape analysis: Box plots of the computed shape descrip- 

tor s ( l ) for different SH degrees l = 2 , 3 , 4 , 5 of all segmented foci shown in Fig. 11 c. 

For each degree l , results for the wild-type nucleus are represented by the left box 

(orange) and results for the double-knockout nucleus are represented by the right 

box (blue). The values marked with a circle indicate the values of s ( l ) of the two 

foci shown in Fig. 11 d. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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ransferases influence the structure of heterochromatin. A total of

7 3D microscopy images of mouse cells were analyzed using fixed

egmentation parameters (and l max = 5 ): 8 images of wild-type nu-

lei and 9 images of Suv4-20h1/h2 double-knockout nuclei (3–5

uclei per image, image size of 1024 × 1024 × 48 to 1024 ×
024 × 82 voxels). Visual inspection of the image data by bio-

ogical experts indicated that foci in some of the knockout nu-

lei have a more complex 3D shape than foci in wild-type nu-

lei. Fig. 11 shows examples of the image data as well as 3D seg-

entation results for one wild-type and one knockout nucleus,

here such shape differences have been observed. It can be seen

hat the foci were well segmented and their 3D shape is captured

ell by the 3D SH intensity model. For the same nuclei, quanti-

ative results of the shape descriptor s ( l ) for different SH degrees
 = 2 , 3 , 4 , 5 are shown as box plots in Fig. 12 . In agreement with

he observations of the experts, the quantified values of s ( l ) are

arger for the knockout nucleus (right boxes) than for the wild-

ype (left boxes). To determine whether the difference between the

wo distributions of s ( l ) is statistically significant, we ranked the

hape descriptor samples to account for the non-normality of the

istributions, and conducted a Welch’s t -test (unequal variances

 -test) for each degree l . The test showed that for l = 2 , 3 , 4 , 5

he difference between the average values of s ( l ) of the wild-type

nd knockout nucleus is significant ( p -values of 3.78e-07, 2.10e-03,

.36e-06, and 5.59e-08). 

.3. Real 3D dynamic microscopy image data 

In addition, we applied our approach to nine 3D dynamic time-

apse image sequences of mouse embryonic fibroblast cell nuclei

image size of 150 × 150 × 59 to 150 × 150 × 101 voxels, 10 min-

tes time interval, 15 to 90 time steps). Despite the relatively high

evel of image noise, we obtained good segmentation results us-

ng fixed parameters for all time steps of an image sequence (we

sed l max = 4 ). As an example, Fig. 13 shows 3D segmentation re-

ults for a cell nucleus at four consecutive time steps. Note that the

ery small marked regions (e.g., for t = 13 and t = 16 ) correspond

o topmost or lowermost planes of a segmented focus. To analyze

D shape changes over time, we computed the shape descriptor

 ( l ) in ( 20 ) based on the 3D segmentation result. Fig. 14 shows

enderings of the 3D shapes of two foci marked by the circles at

ime step t = 13 in Fig. 13 (top) and corresponding values of the

hape descriptor s ( l ) for different SH degrees l = 2 , 3 , 4 (bott om).

he shape of the focus in the first row (red) is sphere-like and un-

ergoes minor changes over time. Thus, s ( l ) is relatively constant.

he elongation of the focus at time steps 6 to 7 and time steps

1 to 14 is reflected by an increase of s (2). The shape of the fo-

us in the second row (blue) is more complex (irregular) and un-

ergoes significant changes. This is well reflected by s (3) and s (4),

or example, in time steps 12 to 17 where the shape of the focus

volves towards a sphere-like shape. This suggests that the shape

escriptor can be exploited to analyze shape changes in 3D time-

apse image data. 
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Fig. 13. Results of 3D foci segmentation for real 3D dynamic microscopy image data using the proposed 3D SH intensity model (SHIM): Cross sectional views ( xy - and 

zy -planes) at four consecutive time steps t of the original 3D images overlaid with contours of the 3D segmentation result. 

Fig. 14. Renderings of the 3D shape of heterochromatin foci (top) from real 3D dynamic microscopy image data as well as values of the shape descriptor s ( l ) (bottom) for 

different degrees l = 2 (left), l = 3 (center), and l = 4 (right) as a function of time. 
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6. Conclusion 

We have introduced a 3D model-based approach for automatic

3D segmentation of pericentric heterochromatin foci from 3D con-

focal light microscopy images. Our approach employs a novel 3D

parametric intensity model based on a spherical harmonics (SH)

expansion which analytically describes the 3D shape and intensi-

ties of the foci. To perform 3D foci segmentation, the 3D SH in-

tensity model is directly fitted to the image intensities by solv-

ing a least-squares minimization problem. We have also presented

an approach for 3D shape analysis of heterochromatin foci based

on the segmentation result. To this end, a rotationally invariant

shape descriptor is determined from the SH coefficients and used

to characterize the 3D shape of the foci. For automatic determina-

tion of the 3D region-of-interest (ROI) for model fitting, we have

presented a Hessian-based multiscale approach. We have also pre-

sented an approach for automatic initialization of the 3D SH in-

tensity model. Our approach has been applied to synthetic 3D im-

age data as well as to real 3D static and real 3D dynamic mi-

croscopy images. We have also performed a quantitative compar-

ison with previous approaches. Our results for 3D synthetic im-

age data demonstrate that the proposed approach copes better

with the irregular 3D shapes of pericentric heterochromatin foci

than previous model-based approaches for regular-shaped struc-

tures, and yields better results than previous non-model-based ap-

proaches, particularly for high levels of image noise. From our ex-

perimental results based on real 3D image data, it turned out that

the proposed approach yields accurate results compared to ground

truth and outperforms previous approaches. A main reason is that

the SH expansion allows a more accurate 3D shape representation

compared to previous model-based approaches using parametric

i  
ntensity models. At the same time, exploitation of a priori knowl-

dge about the shape and intensity of heterochromatin structures

mproves the robustness to image noise and low foci contrast com-

ared to non-model-based approaches. Our results for real 3D im-

ge data illustrate how different biological questions can be ad-

ressed using our approach: 

(1) It enables accurate 3D segmentation of heterochromatin and

associated proteins ( Fig. 10 ). For example, in contrast to

HP1 α studied here, HP1 β was found to localize differently

with respect to heterochromatin ( Mattout et al., 2015 ). Such

differences can be quantified based on the 3D segmentation

results of our approach. 

(2) 3D shape properties of heterochromatin foci can be quanti-

fied to assess the effect of chromatin modifiers, for example,

the histone methylase Suv4-20h1/2 ( Figs. 11 and 12 ). 

(3) Shape changes of heterochromatin foci over time can be

quantified from dynamic 3D microscopy images ( Figs. 13 and

14 ) and exploited to measure the kinetics of heterochro-

matin reorganization. Such experiments are essential to test

predictions of theoretical mechanistic models that describe

how epigenetic networks establish heterochromatin medi-

ated gene silencing in systems biology studies ( Müller-Ott

et al., 2014 ). 

A limitation of our approach is that it assumes homogeneity of

oreground and background intensities of the foci. If these assump-

ions are not met, for example, for foci located at the nucleus bor-

er, where several background intensities exist in the local neigh-

orhood of the foci, the accuracy of model fitting is reduced. Our

pproach also assumes a relatively uniform blurring of the image

ntensities in all directions, which is the case in our 3D image data.



S. Eck et al. / Medical Image Analysis 32 (2016) 18–31 29 

F  

p  

b  

o  

o  

i  

fi  

v  

m  

t  

w  

d

A

 

C  

G  

t  

o  

r

A

 

(

P  

T  

u  

e

A

h

 

g  

r

w  

s

T

T

θ

ϕ

G

T  

r

N  

T

∂z 0 
or other image data with highly non-uniform blurring, for exam-

le, significantly higher blurring in z -direction, our approach could

e extended. Another issue is the choice of the maximum degree

f the SH expansion. In our experiments we used values smaller

r equal to five. For very large foci, for example, in microscopy

mages with a higher spatial resolution, using values larger than

ve could yield more accurate results, since more shape details are

isible and can be captured. A topic of future work is the auto-

atic selection of an optimal value for the maximum degree of

he SH expansion based on the 3D image data. In future work,

e will also apply our approach to different types of 3D image

ata. 
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ppendix A. associated Legendre polynomials 

The associated Legendre polynomials are defined by (e.g.,

 Arfken et al., 2005 )) 

 

m 

l (x ) = 

(−1) m 

2 

l l! 
(1 − x 2 ) 

m 

2 
∂ l+ m 

∂x l+ m 

(x 2 − 1) l (A.1)

o compute function values and first order derivatives of P m 

l 
(x ) , we

sed the method described in Holmes and Featherstone ( Holmes

t al., 2002 ). 

ppendix B. first order partial derivatives of the 3D spherical 

armonics intensity model 

The first order partial derivatives of the SH intensity model

 M, SH ( x, p ) (see (11) in Section 2.2 ) with respect to the model pa-

ameters p = (a , b , a 0 , a 1 , σ, x 0 ) 
T are given by 

∂g M,SH 

∂a m 

l 

= (a 1 − a 0 ) 
(

G σ (T 1 ) cos (mϕ π ) N 

m 

l P m 

l ( cos θπ ) 

+ G σ (T 2 ) cos (mϕ) N 

m 

l P m 

l ( cos θ ) 
)

(B.1) 

∂g M,SH 

∂b m 

l 

= (a 1 − a 0 ) 
(

G σ (T 1 ) sin (mϕ π ) N 

m 

l P m 

l ( cos θπ ) 

+ G σ (T 2 ) sin (mϕ) N 

m 

l P m 

l ( cos θ ) 
)

(B.2) 

∂g M,SH 

∂a 0 
= 1 − g SH (h , p ) (B.3) 

∂g M,SH 

∂a 1 
= g SH (h , p ) (B.4) 

∂g M,SH 

∂σ
= 

a 1 − a 0 
σ

(
T 2 G σ (T 2 ) − T 1 G σ (T 1 ) 

)
(B.5) 

∂g M,SH 

∂x 0 
= (a 1 − a 0 ) 

(
∂T 1 
∂x 0 

G σ (T 1 ) − ∂T 2 
∂x 0 

G σ (T 2 ) 
)

analogous for 
∂g M,SH 

∂y 0 
, 
∂g M,SH 

∂z 0 
(B.6) 
here h = (h x , h y , h z ) T denotes the relative 3D position with re-

pect to x 0 = (x 0 , y 0 , z 0 ) 
T , i.e., h = x − x 0 , and 

 1 = r + r SH (θπ , ϕ π ) (B.7) 

 2 = r − r SH (θ, ϕ) (B.8) 

∂T 1 
∂x 0 

= 

∂r 

∂x 0 
+ 

∂ 

∂x 0 
r SH (θπ , ϕ π ) (B.9) 

∂T 2 
∂x 0 

= 

∂r 

∂x 0 
− ∂ 

∂x 0 
r SH (θ, ϕ) (B.10) 

π = π − θ (B.11) 

 π = ϕ + π (B.12) 

 σ (x ) = 

1 √ 

2 πσ
e 

−x 2 

2 σ2 . (B.13) 

o solve (B.9) and (B.10) , the first order partial derivative of the

adius function r SH ( θ , ϕ) in (5) is required: 

∂r SH (θ, ϕ) 

∂x 0 
= 

l max ∑ 

l=0 

[ 
− sin (θ ) a 0 l N 

0 
l 

∂P 0 
l 
( cos θ ) 

∂x 0 

∂θ

∂x 0 

+ 

l ∑ 

m =1 

(
mN 

m 

l P m 

l ( cos θ ) 
∂ϕ 

∂x 0 

× (−a m 

l sin (mϕ) + b m 

l cos (mϕ)) 

− sin (θ ) N 

m 

l 

∂P m 

l 
( cos θ ) 

∂x 0 

∂θ

∂x 0 

× (a m 

l cos (mϕ) + b m 

l sin (mϕ)) 
)] 

. (B.14) 

ote that r = r(x ) , θ = θ (x ) , and ϕ = ϕ(x ) depend on x 0 (see (7) ).

he terms in (B.9), (B.10) , and (B.14) are given by 

∂r 

∂x 0 
= −h x 

r 
, analogous for 

∂r 

∂y 0 
, 

∂r 

∂z 0 
(B.15) 

∂θ

∂x 0 
= 

−h x h z 

r(h ) 3 

[
1 −

(
h z 

r(h ) 

)2 
]− 1 

2 

(B.16) 

∂θ

∂y 0 
= 

−h y h z 

r(h ) 3 

[
1 −

(
h z 

r(h ) 

)2 
]− 1 

2 

(B.17) 

∂θ

∂z 0 
= 

(
1 

r(h ) 
− h 

2 
z 

r(h ) 3 

)[
1 −

(
h z 

r(h ) 

)2 
]− 1 

2 

(B.18) 

∂ϕ 

∂x 0 
= 

h y 

h 

2 
x + h 

2 
y 

(B.19) 

∂ϕ 

∂y 0 
= 

−h x 

h 

2 
x + h 

2 
y 

(B.20) 

∂ϕ = 0 (B.21) 



30 S. Eck et al. / Medical Image Analysis 32 (2016) 18–31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H  

 

 

 

 

 

H  

 

H  

 

I  

 

J  

 

 

 

J  

 

 

 

 

 

K  

 

 

 

K  

 

M  

 

 

M  

 

 

M  

 

 

M  

 

 

 

M  

 

 

 

 

M  

 

O  

O  

 

 

P  

P  

 

P

 

 

P  

 

P  
References 

Andrey, P. , Kieu, K. , Kress, C. , Lehmann, G. , Tirichine, L. , Liu, Z. , Biot, E. , Adenot, P.-G. ,

Hue-Beauvais, C. , Houba-Herin, N. , Duranthon, V. , Devinoy, E. , Beaujean, N. ,

Gaudin, V. , Maurin, Y. , Debey, P. , 2010. Statistical analysis of 3D images detects
regular spatial distributions of centromeres and chromocenters in animal and

plant nuclei. PLoS Comput. Bio. 6 (7), e10 0 0853 . 
Arfken, G.B. , Weber, H.J. , Harris, F.E. , 2005. Mathematical methods for Physicists,

sixth Academic Press . 
Böcker, W. , Iliakis, G. , 2006. Computational methods for analysis of foci: validation

for radiation-induced y-h2AX foci in human cells. Radiat. Res. 165 (1), 113–

124 . 
Baust, M. , Navab, N. , 2010. A spherical harmonics shape model for level set seg-

mentation. In: Daniilidis, K., Maragos, P., Paragios, N. (Eds.), Proceedings of the
11th European Conference on Computer Vision (ECCV’10). In: Lecture Notes in

Computer Science, 6313. Springer Berlin Heidelberg, Heraklion, Crete, Greece,
pp. 580–593 . 

Beil, M. , Dürschmied, D. , Paschke, S. , Schreiner, B. , Nolte, U. , Bruel, A. , Irinopoulou, T. ,
2002. Spatial distribution patterns of interphase centromeres during retinoic

acid-induced differentiation of promyelocytic leukemia cells. Cytometry A 47

(4), 217–225 . 
Beil, M. , Fleischer, F. , Paschke, S. , Schmidt, V. , 2005. Statistical analysis of the three-

-dimensional structure of centromeric heterochromatin in interphase nuclei. J.
Microsc. 217 (1), 60–68 . 

Brechbühler, C. , Gerig, G. , Kübler, O. , 1995. Parametrization of closed surfaces for
3-d shape description. Comput. Vis. Image Underst. 61 (2), 154–170 . 

Cantaloube, S. , Romeo, K. , Le Baccon, P. , Almouzni, G. , Quivy, J.-P. , 2012. Character-

ization of chromatin domains by 3D fluorescence microscopy: an automated
methodology for quantitative analysis and nuclei screening. BioEssays 34 (6),

509–517 . 
Courant, R. , Hilbert, D. , 1953. Methods of Mathematical Physics, second Interscience .

Cremer, T., Cremer, M., Hübner, B., Strickfaden, H., Smeets, D., Popken, J., Sterr, M.,
Markaki, Y., Rippe, K., Cremer, C., 2015. The 4D nucleome: evidence for a dy-

namic nuclear landscape based on co-aligned active and inactive nuclear com-

partments. FEBS Lett. doi: 10.1016/j.febslet.2015.05.037 . 
de Chaumont, F. , Dallongeville, S. , Chenouard, N. , Hervé, N. , Pop, S. , Provoost, T. ,

Meas-Yedid, V. , Pankajakshan, P. , Lecomte, T. , Le Montagner, Y. , Lagache, T. , Du-
four, A. , Olivo-Marin, J.-C. , 2012. Icy: An open bioimage informatics platform for

extended reproducible research. Nature Methods 9 (7), 690–696 . 
Du, C.-J. , Hawkins, P.T. , Stephens, L.R. , Bretschneider, T. , 2013. 3d time series analysis

of cell shape using laplacian approaches. BMC Bioinform. 14 (296) . 

Ducroz, C. , Olivo-Marin, J.-C. , Dufour, A. , 2012. Characterization of cell shape and
deformation in 3d using spherical harmonics. In: Frangi, A., Santos, A. (Eds.),

Proceedings of the 9th IEEE Internat. Symposium on Biomedical Imaging: From
Nano to Macro (ISBI’12). IEEE Computer Society, Barcelona, Spain, pp. 848–

851 . 
Dzyubachyk, O. , Essers, J. , van Cappellen, W.A. , Baldeyron, C. , Inagaki, A. ,

Niessen, W.J. , Meijering, E. , 2010. Automated analysis of time-lapse fluorescence

microscopy images: from live cell images to intracellular foci. Bioinform. 26
(19), 2424–2430 . 

Eck, S. , Rohr, K. , Müller-Ott, K. , Rippe, K. , Wörz, S. , 2012. Combined model-based
and region-adaptive 3D segmentation and 3D co-localization analysis of hete-

rochromatin foci. In: Tolxdorff, T., Deserno, T., Handels, H., Meinzer, H.-P. (Eds.),
Proceedings on Workshop of Bildverarbeitung für die Medizin (BVM’12). In: In-

formatik aktuell. Springer Berlin Heidelberg, Berlin, Germany, pp. 9–14 . 

Eck, S. , Rohr, K. , Biesdorf, A. , Müller-Ott, K. , Rippe, K. , Wörz, S. , 2013. A 3D in-
tensity model based on spherical harmonics for automatic 3D segmentation of

heterochromatin foci. In: Parvin, C., Viergever, M., Liebling, M., Staib, S. (Eds.),
Proceedings of the 10th IEEE Internat. Symposium on Biomedical Imaging:

From Nano to Macro (ISBI’13). IEEE Computer Society, San Francisco, CA/USA,
pp. 1476–1479 . 

Eck, S. , Wörz, S. , Müller-Ott, K. , Hahn, M. , Schotta, G. , Rippe, K. , Rohr, K. , 2014. 3d
shape analysis of heterochromatin foci based on a 3d spherical harmonics in-

tensity model. In: Ourselin, S., Styner, M. (Eds.), Proceedings of the SPIE Medical

Imaging 2014: Image Processing. In: Proceedings of SPIE, 9034. SPIE Bellingham,
WA/USA, San Diego, CA/USA, pp. 1484–1487 . 

El-Baz, A. , Nitzken, M. , Khalifa, F. , Elnakib, A. , Gimel’farb, G. , Falk, R. , El-Ghar, M. ,
2011. 3d shape analysis for early diagnosis of malignant lung nodules. In:

Székely, G., Hahn, H. (Eds.), Proceedings of the 22nd Internat. Conf. on In-
formation Processing in Medical Imaging (IPMI’11). In: Lecture Notes in Com-

puter Science, 6801. Springer Berlin Heidelberg, Kloster Irsee, Germany, pp. 772–

783 . 
Frangi, A.F. , Niessen, W.J. , Vincken, K.L. , Viergever, M.A. , 1998. Multiscale vessel en-

hancement filtering. In: Wells, W., Colchester, A., Delp, S. (Eds.), Proceedings of
the First Internat. Conf. on Medical Image Computing and Computer-Assisted

Intervention (MICCAI’98). In: Lecture Notes in Computer Science, 1496. Springer
Berlin Heidelberg, Cambridge, MA/USA, pp. 130–137 . 

Gerig, G. , Styner, M. , Jones, D. , Weinberger, D. , Lieberman, J. , 2001. Shape analysis

of brain ventricles using SPHARM. In: Staib, L. (Ed.), Proceedings in the Work-
shop on Mathematical Methods in Biomedical Image Analysis 2001 (MMBIA’01).

Kauai, HJ/USA, pp. 171–178 . 
Gu, X. , Wang, Y. , Chan, T.F. , Thompson, P.M. , Yau, S. , 2004. Genus zero surface con-

formal mapping and its application to brain surface mapping. IEEE Trans. Med.
Imaging 23 (8), 949–958 . 

Hahn, M. , Dambacher, S. , Schotta, G. , 2010. Heterochromatin dysregulation in human

diseases. J. Appl. Physiol. 109 (1), 232–242 . 
ahn, M. , Dambacher, S. , Dulev, S. , Kuznetsova, A.Y. , Eck, S. , Wörz, S. , Sadic, D. ,
Schulte, M. , Mallm, J.-P. , Maiser, A. , Debs, P. , von Melchner, H. , Leonhardt, H. ,

Schermelleh, L. , Rohr, K. , Rippe, K. , Storchova, Z. , Schotta, G. , 2013. Suv4-20h2
mediates chromatin compaction and is important for cohesin recruitment to

heterochromatin. Genes Dev. 27 (8), 859–872 . 
Hathaway, N.A. , Bell, O. , Hodges, C. , Miller, E.L. , Neel, D.S. , Crabtree, G.R. , 2012. Dy-

namics and memory of heterochromatin in living cells. Cell 149 (7), 1447–1460 .
olmes, S.A. , Featherstone, W.E. , 2002. A unified approach to the clenshaw summa-

tion and the recursive computation of very high degree and order normalised

associated legendre functions. J. Geodesy 76 (5), 279–299 . 
oráková, A.H. , Bártová, E. , Galiová, G. , Uhlírová, R. , Matula, P. , Kozubek, S. , 2010.

Suv39h-independent association of hp1 beta with fibrillarin-positive nucleolar
regions. Chromosoma 119 (3), 227–241 . 

vashkevich, A.N. , Martin, O.A. , Smith, A.J. , Redon, C.E. , Bonner, W.M. , Martin, R.F. ,
Lobachevsky, P.N. , 2011. H2AX foci as a measure of DNA damage: a computa-

tional approach to automatic analysis. Mutat. Res. 711 (1-2), 49–60 . 

aeger, S. , Palaniappan, K. , Casas-Delucchi, C.S. , Cardoso, M.C. , 2010. Classification of
cell cycle phases in 3d confocal microscopy using PCNA and chromocenter fea-

tures. In: Chellappa, R., Anandan, P., Rajagopalan, A., Narayanan, P.J., Torr, P.H.S.
(Eds.), Proceedings of the 7th Indian Conference on Computer Vision, Graphics

and Image Processing (ICVGIP ’10). Chennai, India, pp. 412–418 . 
ost, K.L. , Haase, S. , Smeets, D. , Schrode, N. , Schmiedel, J.M. , Bertulat, B. , Herzel, H. ,

Cremer, M. , Cardoso, M.C. , 2011. 3D-image analysis platform monitoring reloca-

tion of pluripotency genes during reprogramming. Nucleic Acids Res. 39 (17),
e113 . 

Kazhdan, M. , Funkhouser, T. , Rusinkiewicz, S. , 2003. Rotation invariant spherical
harmonic representation of 3d shape descriptors. In: Kobbelt, L., Schröder, P.,

Hoppe, H. (Eds.), Proceedings of the Eurographics Symposium on Geometry Pro-
cessing (SGP’03). The Eurographics Association, Aachen, Germany, pp. 156–164 . 

elemen, A. , Reist, H.-W. , Gerig, G. , Székely, G. , 1996. Automatic segmentation of

cell nuclei from confocal laser scanning microscopy images. In: Höhne, K.H.,
Kikinis, R. (Eds.), Proceedings of the Visualization in Biomedical Computing

(VBC’96). In: Lecture Notes in Computer Science. Springer, Hamburg, Germany,
pp. 193–202 . 

elemen, A. , Székely, G. , Gerig, G. , 1999. Elastic model-based segmentation of 3-d
neuroradiological data sets. IEEE Trans. Med. Imaging 18 (10), 828–839 . 

Khairy, K. , Foo, J. , Howard, J. , 2010. Shapes of red blood cells: Comparison of 3d

confocal images with the bilayer-couple model. Cell. Mol. Bioeng. 1 (2-3), 173–
181 . 

üller, K.P. , Erdel, F. , Caudron-Herger, M. , Marth, C. , Fodor, B.D. , Richter, M. , Scara-
naro, M. , Beaudouin, J. , Wachsmuth, M. , Rippe, K. , 2009. Multiscale analysis of

dynamics and interactions of heterochromatin protein 1 by fluorescence fluctu-
ation microscopy. Biophys. J. 97 (11), 2876–2885 . 

üller-Ott, K. , Erdel, F. , Matveeva, A. , Mallm, J.-P. , Rademacher, A. , Hahn, M. ,

Bauer, C. , Zhang, Q. , Kaltofen, S. , Schotta, G. , Höfer, T. , Rippe, K. , 2014. Speci-
ficity, propagation, and memory of pericentric heterochromatin. Mol. Syst. Bio.

10 (8), 1–22 . 
arquardt, D. , 1963. An algorithm for least-squares estimation of nonlinear param-

eters. J. Soc. Ind. Appl. Math. 11 (2), 431–441 . 
Marshall, W.F. , Dernburg, A.F. , Harmon, B. , Agard, D.A. , Sedat, J.W. , 1996. Specific

interactions of chromatin with the nuclear envelope: positional determination
within the nucleus in drosophila melanogaster. Mol. Bio. Cell 7 (5), 825–842 . 

attout, A. , Aaronson, Y. , Sailaja, B.S. , Raghu Ram, E.V. , Harikumar, A. , Mallm, J.-P. ,

Sim, K.H. , Nissim-Rafinia, M. , Supper, E. , Singh, P.B. , Sze, S.K. , Gasser, S.M. ,
Rippe, K. , Meshorer, E. , 2015. Heterochromatin protein 1 β (HP1 β) has distinct

functions and distinct nuclear distribution in pluripotent versus differentiated
cells. Genome Bio. 16 (1), 213 . 

atula, P. , Verissimo, F. , Wörz, S. , Eils, R. , Pepperkok, R. , Rohr, K. , 2010. Quantifica-
tion of fluorescent spots in time series of 3-D confocal microscopy images of

endoplasmic reticulum exit sites based on the HMAX transform. In: Dawant, B.,

Haynor, D. (Eds.), In: Proceedings of SPIE Medical Imaging 2010: Image Process-
ing. Proceeding of SPIE, 7623. SPIE Bellingham, WA/USA, San Diego, CA/USA pp.

76261H-1–76261H-7 . 
eshorer, E. , Yellajoshula, D. , George, E. , Scambler, P.J. , Brown, D.T. , Misteli, T. , 2006.

Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem
cells. Dev. Cell 10 (1), 105–116 . 

livo-Marin, J.-C. , 2002. Extraction of spots in biological images using multiscale

products. Pattern Recognit. 35 (9), 1989–1996 . 
sterwald, S. , Deeg, K.I. , Chung, I. , Parisotto, D. , Wörz, S. , Rohr, K. , Erfle, H. , Rippe, K. ,

2015. Pml induces compaction, trf2 depletion and dna damage signaling at
telomeres and promotes their alternative lengthening.. J. Cell Sci. 128 (10),

1887–1900 . 
epperkok, R. , Ellenberg, J. , 2006. High-throughput fluorescence microscopy for sys-

tems biology. Nat. Rev. Mol. Cell Bio. 7 (9), 690–696 . 

lass, C. , Pfister, S.M. , Lindroth, A.M. , Bogatyrova, O. , Claus, R. , Lichter, P. , 2013. Muta-
tions in regulators of the epigenome and their connections to global chromatin

patterns in cancer. Nat. Rev. Genet. 14 (11), 765–780 . 
op, S. , Dufour, A.C. , Le Garrec, J.-F. , Ragni, C.V. , Cimper, C. , Meilhac, S.M. , Olivo–

Marin, J.-C. , 2013. Extracting 3d cell parameters from dense tissue environ-
ments: Application to the development of the mouse heart. Bioinform. 29 (6),

772–779 . 

oulet, A. , Arganda-Carreras, I. , Legland, D. , Probst, A.V. , Andrey, P. , Tatout, C. , 2015.
Nucleus: an image plugin for quantifying 3D images of interphase nuclei. Bioin-

form. 31 (7), 1144–1146 . 
robst, A.V. , Almouzni, G. , 2008. Pericentric heterochromatin: Dynamic organization

during early development in mammals. Differentiation 76 (1), 15–23 . 

http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0028
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0028
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0028
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0028
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0028
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0028
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0028
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0028
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0028
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0028
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0028
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0028
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0028
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0028
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0028
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0028
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0028
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0048
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0048
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0048
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0048
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0022
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0022
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0022
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0036
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0036
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0036
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0020
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0020
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0020
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0020
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0020
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0020
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0020
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0020
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0021
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0021
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0021
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0021
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0021
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0045
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0045
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0045
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0045
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0025
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0025
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0025
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0025
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0025
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0025
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0049
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0049
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0049
http://dx.doi.org/10.1016/j.febslet.2015.05.037
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0057
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0057
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0057
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0057
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0057
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0057
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0057
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0057
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0057
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0057
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0057
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0057
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0057
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0057
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0043
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0043
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0043
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0043
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0043
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0042
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0042
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0042
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0042
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0030
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0030
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0030
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0030
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0030
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0030
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0030
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0030
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0027
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0027
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0027
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0027
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0027
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0027
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0046
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0046
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0046
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0046
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0046
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0046
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0046
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0047
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0047
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0047
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0047
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0047
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0047
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0047
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0047
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0040
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0040
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0040
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0040
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0040
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0040
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0040
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0040
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0051
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0051
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0051
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0051
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0051
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0038
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0038
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0038
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0038
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0038
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0038
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0055
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0055
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0055
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0055
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0055
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0055
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0003
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0003
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0003
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0003
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0014
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0007
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0007
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0007
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0007
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0007
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0007
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0007
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0060
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0060
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0060
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0026
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0026
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0026
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0026
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0026
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0026
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0026
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0024
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0024
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0024
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0024
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0024
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0024
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0024
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0024
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0052
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0052
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0052
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0052
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0052
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0023
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0023
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0023
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0023
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0023
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0023
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0023
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0023
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0023
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0023
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0054
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0054
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0054
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0054
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0033
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0033
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0033
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0033
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0033
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0034
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0034
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0034
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0034
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0041
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0041
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0041
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0041
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0006
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0006
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0006
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0006
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0006
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0006
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0006
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0006
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0006
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0006
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0006
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0008
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0008
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0008
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0008
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0008
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0008
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0008
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0008
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0008
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0008
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0008
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0008
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0008
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0053
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0053
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0037
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0037
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0037
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0037
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0037
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0037
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0013
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0013
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0013
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0013
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0013
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0013
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0013
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0013
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0013
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0013
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0013
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0013
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0013
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0013
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0013
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0016
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0016
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0016
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0016
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0016
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0016
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0016
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0012
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0012
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0012
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0012
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0012
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0012
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0012
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0056
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0056
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0018
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0018
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0018
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0018
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0018
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0018
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0018
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0018
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0018
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0015
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0015
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0015
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0004
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0004
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0004
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0004
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0004
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0004
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0004
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0058
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0058
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0058
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0058
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0058
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0058
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0058
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0058
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0029
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0029
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0029
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0029
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0029
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0029
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0029
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0011
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0011
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0011


S. Eck et al. / Medical Image Analysis 32 (2016) 18–31 31 

S  

S  

S  

S  

 

 

 

 

S  

 

S  

 

T  

 

T  

 

W  

 

W  

 

 

W  

W  

Y  
aab, B.J. , Mansuy, I.M. , 2014. Neurobiological disease etiology and inheritance: an
epigenetic perspective. J. Exp. Bio. 217 (Pt 1), 94–101 . 

aksouk, N. , Simboeck, E. , Déjardin, J. , 2015. Constitutive heterochromatin formation
and transcription in mammals. Epigenetics Chromatin 8 (3), 1–17 . 

exton, T. , Cavalli, G. , 2015. The role of chromosome domains in shaping the func-
tional genome. Cell 160 (6), 1049–1059 . 

ingh, S. , Janoos, F. , Pecot, T. , Caserta, E. , Huang, K. , Rittscher, J. , Leone, G. , Machi-
raju, R. , 2011. Non-parametric population analysis of cellular phenotypes. In:

Fichtinger, G., Martel, A., Peters, T. (Eds.), Proceedings of the 14th Internat.

Conf. on Medical Image Computing and Computer-Assisted Intervention (MIC-
CAI’11). In: Lecture Notes in Computer Science, 6891. Springer Berlin Heidelberg,

Toronto, Canada, pp. 343–351 . 
tyner, M. , Lieberman, J.A. , Pantazis, D. , Gerig, G. , 2004. Boundary and medial shape

analysis of the hippocampus in schizophrenia. Med. Image Anal. 8 (3), 197–203 .
zékely, G. , Kelemen, A. , Brechbühler, C. , Gerig, G. , 1996. Segmentation of 2-d

and 3-d objects from MRI volume data using constrained elastic deformations

of flexible fourier contour and surface models. Med. Image Anal. 1 (1), 19–34 . 
homann, D. , Rines, D.R. , Sorger, P.K. , Danuser, G. , 2002. Automatic fluorescent tag

detection in 3d with super-resolution: application to the analysis of chromo-
some movement. J. Microsc. 208, 49–64 . 
utar, I.B. , Pathak, S.D. , Gong, L. , Cho, P.S. , Wallner, K. , Kim, Y. , 2006. Semiautomatic
3-d prostate segmentation from TRUS images using spherical harmonics. IEEE

Trans. Med. Imaging 25 (12), 1645–1654 . 
örz, S. , Rohr, K. , 2006. Localization of anatomical point landmarks in 3d medi-

cal images by fitting 3d parametric intensity models. Med. Image Anal. 10 (1),
41–58 . 

örz, S. , Sander, P. , Pfannmöller, M. , Rieker, R.J. , Joos, S. , Mechtersheimer, G. ,
Boukamp, P. , Lichter, P. , Rohr, K. , 2010. 3D geometry-based quantification of

colocalizations in multichannel 3D microscopy images of human soft tissue tu-

mors. IEEE Trans. Med. Imaging 29 (8), 1474–1484 . 
aters, J.C. , 2009. Accuracy and precision in quantitative fluorescence microscopy.

J. Cell Bio. 185 (7), 1135–1148 . 
ebster, A.L.H. , Yan, M.S.-C. , Marsden, P.A. , 2013. Epigenetics and cardiovascular dis-

ease. Can. J. Cardiol. 29 (1), 46–57 . 
en, J. , Chang, F. , Chang, S. , 1995. A new criterion for automatic multilevel thresh-

olding. IEEE Trans. Image Process. 4 (3), 370–378 . 

http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0010
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0010
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0010
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0005
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0005
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0005
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0005
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0001
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0001
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0001
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0044
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0044
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0044
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0044
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0044
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0044
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0044
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0044
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0044
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0039
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0039
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0039
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0039
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0039
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0032
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0032
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0032
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0032
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0032
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0031
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0031
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0031
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0031
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0031
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0035
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0035
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0035
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0035
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0035
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0035
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0035
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0050
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0050
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0050
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0017
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0017
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0017
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0017
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0017
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0017
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0017
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0017
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0017
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0017
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0019
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0019
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0009
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0009
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0009
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0009
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0059
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0059
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0059
http://refhub.elsevier.com/S1361-8415(16)30001-9/sbref0059

	A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci
	1 Introduction
	2 3D spherical harmonics intensity model
	2.1 3D spherical harmonics shape model
	2.2 3D parametric intensity model

	3 Automatic 3D foci segmentation
	3.1 3D detection of heterochromatin foci
	3.2 Determination of 3D regions-of-interest for model fitting
	3.3 Model initialization
	3.4 3D least-squares model fitting
	3.5 Improvement of the computation time

	4 3D foci shape analysis
	5 Experimental results
	5.1 Synthetic 3D image data
	5.2 Real 3D static microscopy image data
	5.2.1 Automatic segmentation of heterochromatin foci in two-channel 3D image data
	5.2.2 Segmentation and shape analysis of heterochromatin foci in a knockout experiment

	5.3 Real 3D dynamic microscopy image data

	6 Conclusion
	 Acknowledgment
	Appendix A associated Legendre polynomials
	Appendix B first order partial derivatives of the 3D spherical harmonics intensity model
	 References


